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Abstract
The renormalization group is a tool that allows one to obtain a reduced
description of systems with many degrees of freedom while preserving the
relevant features. In the case of quantum systems, in particular, one-
dimensional systems defined on a chain, an optimal formulation is given
by White’s ‘density matrix renormalization group’. This formulation can be
shown to rely on concepts of the developing theory of quantum information.
Furthermore, White’s algorithm can be connected with a peculiar type of
quantization, namely, angular quantization. This type of quantization arose in
connection with quantum gravity problems, in particular, the Unruh effect in
the problem of black-hole entropy and Hawking radiation. This connection
highlights the importance of quantum system boundaries, regarding the
concentration of quantum states on them, and helps us to understand the optimal
nature of White’s algorithm.

PACS numbers: 05.10.Cc, 03.67.−a

1. Introduction

The renormalization group arose in quantum field theory as a transformation of the coupling
constant(s) equivalent to a resummation of perturbation theory. It was later generalized by
Wilson to statistical systems as a transformation of the full probability distribution, which
is defined by an unbounded set of parameters. One of the most interesting aspects of this
general renormalization group is that it can be understood as a transformation that removes
small-scale degrees of freedom but preserves the set of degrees of freedom relevant to describe
overall features, such as they are needed in the description of phase transitions, for example.
In that sense, a renormalization group transformation is not reversible, so we should speak of
a semigroup rather than of a group.

Regarding quantum many-body systems, one is most interested in calculating relevant
features of the ground state (and maybe some excited states). This is a problem suitable for a
renormalization group treatment, and indeed related to the problem of calculating the properties
of classical statistical systems. There are many particular renormalization group algorithms
that remove small-scale degrees of freedom in various ways. In principle, any algorithm
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that approaches a fixed point is valid. However, the rate of convergence can vary broadly.
It has been a problem to find efficient algorithms. In this regard, a deeper understanding
of the process of removal of small-scale information surely helps. Here we shall focus on
White’s ‘density matrix renormalization group’ [1, 2], which has proved to be very powerful
and which is indeed based on a deep analysis of the process of removal of small-scale
information.

The analysis of the process of removal of small-scale information is actually a part
of the analysis of information processing and, therefore, belongs to information theory.
Furthermore, an analogy can be established between renormalization group transformations
and the irreversible evolution of statistical systems, as implied by Boltzmann’s H-theorem [3].
Since the density matrix renormalization group is an optimal tool for quantum systems (albeit
mainly one-dimensional chains), we can expect a strong link with the theory of quantum
information. This theory has its origins in work done early in the past century, shortly after
the discovery of quantum theory itself. However, it has only undergone a period of rapid
development during the past years, in relation with the prospects of quantum computation.
The semigroup character of the quantum renormalization group is best understood by using
concepts of quantum information theory, as we shall do.

White’s algorithm involves a doubling of the system at each renormalization group
iteration. As we will see, this makes sense from the quantum information standpoint and, in
addition, has an interesting interpretation, since there is a relation with angular quantization [4].
Indeed, White’s algorithm can be connected with another way of solving quantum systems;
namely, quantum chains can be solved by relating them with classical two-dimensional systems
on a lattice and using the corner transfer matrix method. The continuum limit gives rise to
a peculiar type of quantization, namely, angular quantization, valid for relativistic quantum
field theories, but different from the standard canonical quantization. This type of quantization
was introduced in connection with quantum gravity problems, namely, the problems of black-
hole entropy and Hawking radiation [5]. Angular quantization yields the relevant states in
the calculation of the density matrix, showing precisely how the full spectrum is truncated to
remove small-scale degrees of freedom [4]. In particular, it renders transparent the importance
of quantum system boundaries, where quantum states concentrate.

Some new developments in the area of renormalization group and quantum information
have appeared recently [6].

2. The density matrix renormalization group

Strongly correlated electron systems have become an important subject in condensed matter
physics. This has led to the development of suitable approximation methods for quantum
lattice models. Chiefly among them is the renormalization group, which has the philosophy
of truncating the multitude of states to the relevant ones to describe the physical properties
of the system in certain domain. There are many ways to implement this idea (not all of
which can be properly called renormalization group methods). The various formulations of
the quantum renormalization group have different efficacy, depending on the particular model
to which they are applied. Two successful classical approaches are Wilson’s treatment of the
Kondo impurity problem and Kadanoff’s blocking technique. These methods belong to the
the class of numerical renormalization groups in real space (as opposed to Fourier space).
Wilson’s treatment of the Kondo problem is accurate, but it relies on the special nature of the
interaction in it. The blocking technique is universal for lattice models but rather inaccurate,
as we analyse next.
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Figure 1. Blocking of a one-dimensional chain, with three sites per block.

2.1. Problems with the real space renormalization group

Consider a one-dimensional lattice model with N sites. If N is sufficiently large to represent a
realistic system, the Hamiltonian involves a huge number of states, because the total number
of states grows exponentially with N. There is no possibility of diagonalizing such a large
Hamiltonian. Instead, we may break the chain into a number of equal size blocks, and we treat
a block as a small size system (see figure 1). We can then diagonalize the block Hamiltonian
and discard the higher energy states. Each block, with the states kept on it, can now be
considered as a site of a new system with a fraction of the initial N sites. In so doing, we get
an effective or renormalized interaction between sites. This procedure can be iterated until the
initial size N is reduced to a small number.

However, the blocking RG converges slowly. White and Noack [7] realized that the
problem lies in the choice of block eigenstates as the states to be kept: these states belong to
a small system, namely, the block, in which the boundary conditions are very important. In
other words, isolating a block from its neighbours destroys the quantum correlations between
them, which are very important for the low-energy spectrum of the total system (with N sites).
These correlations are somehow recovered by the renormalization of the couplings, but in a
small amount. A partial remedy is the ‘combination of boundary conditions’ approach [7],
namely, to consider block states corresponding to various boundary conditions. This approach
is effective in some cases only.

So White and Noack [7] proposed to diagonalize a larger block, the ‘superblock’, which
includes the basic block. Then the problem is to project the ‘superblock’ state (or states) onto
block states: we need a criterium to select which ones to keep. White’s intuition led him to
appeal to Feynman’s philosophy on the density matrix formalism: a density matrix simply
represents the correlation of a quantum system with the rest of the universe. This correlation
is usually called entanglement. The conclusion White drew is that the block states to be
neglected, among the density matrix eigenstates, are those with small eigenvalues, because
they hardly contribute to physical observables [1]. Let us recall White’s procedure [1] more
precisely.

2.2. Density matrix renormalization group algorithm

Let us have a one-dimensional quantum system on a chain (finite or infinite). We select a
relatively large block (the ‘superblock’) but such that it can be exactly diagonalized. We
obtain its ground state |ψ〉, which we take as environment of a smaller block included in the
superblock. Let |i〉, i = 1, . . . , �, be a complete set of block states and |j 〉, j = 1, . . . , J,

be the states of the rest of the ‘superblock’ (Feynman’s rest of the universe). Then
|ψ〉 = ∑

i,j ψij |i〉|j 〉. We want to find a subset of block states |a〉, a = 1, . . . , m < �, such
that they provide an optimal reduced representation of the block in the environment (boundary
conditions) given by the superblock state. In other words, we want |ψ̃〉 = ∑

a,j ψ̃aj |a〉|j 〉 to
be as close to |ψ〉 as possible. White’s prescription is to minimize the ‘distance’

S = ||ψ〉 − |ψ̃〉|2. (1)

Since both |ψ〉 and |ψ̃〉 are actually matrices, this distance is in fact the standard distance
between matrices. He shows that this minimization problem amounts to the singular value



7996 J Gaite

decomposition of the rectangular matrix ψij . One writes ψ = UDV T , where U and D are
� × � matrices, V is an � × J matrix (J � �), U is orthogonal and V column orthogonal, and
D is a diagonal matrix containing the singular values. The arbitrary integer m < � defines
the number � − m of singular values to be neglected. Actually, U is the matrix formed by the
eigenvectors of the block density matrix and ρ = UD2UT . Removing � − m singular values
is equivalent to keeping the m most important eigenvectors |a〉 of the block density matrix.

The construction of an iterative algorithm that implements the previous result is not
difficult. A convenient algorithm [1], inspired by Wilson’s treatment of the Kondo problem,
can be schematically expressed as follows:

(1) Select a sufficiently small, soluble block [0, L]:

(2) Reflect the block on the origin:
(3) Compute the ground state.
(4) Compute the density matrix of the block [0, L].
(5) Discard eigenstates with smallest eigenvalues.
(6) Add one site next to the origin.
(7) Go to 2.

(This algorithm is to be iterated indefinitely and represents the ‘infinite-system algorithm’, but
there is also a ‘finite-system algorithm’. We refer the reader to White’s papers [1] for more
details.) One has to adjust this procedure in such a way that the iteration keeps the Hilbert
space size approximately constant. The procedure can be performed algebraically for a chain
of coupled harmonic oscillators [4]. Otherwise, it has to be performed numerically.

2.2.1. Density matrix renormalization group for mixed states. We have assumed so far that
the system is in a pure state (the ground state), which we want to calculate. One can also
consider mixed states [1]. In particular, it is useful to consider the properties of thermal states.
If we represent the mixed state by means of a set of Boltzmann weights wk , then we have to
minimize

S =
∑

k

wk||ψk〉 − |ψ̃k〉|2, (2)

where ψ̃k
ij = ∑

α,j ak
αuα

i v
k,α
j . The optimal solution is again to neglect the smallest (most

singular) eigenvalues of the density matrix

ρii ′ =
∑

k

wk

∑
j

ψk
ijψ

k
i ′j ,

namely, the smallest values of
∑

k wk

∣∣ak
α

∣∣2
. The same type of iterative algorithm can still be

used.

3. Entanglement entropy and quantum information

Entanglement or non-separability refers to the existence of quantum correlations between
two sets of degrees of freedom of a physical system that can be considered as subsystems
[8, 9]. Two (sub)systems in interaction are entangled and their entanglement continues
after their interaction has ceased. This fact gives rise to the Einstein–Podolsky–Rosen (EPR)
paradox. So, while there can be entanglement without interaction, interaction always produces
entanglement.
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It is clear that entanglement plays a role in the density matrix renormalization group
and, in general, in quantum phase transitions. This has been realized recently, by researchers
in quantum information theory [10, 11]. The subject linking quantum information theory to
traditional problems in condensed matter theory surely deserves further study. Here we review
the concept of entanglement and other relevant concepts of information theory, regarding their
role in the density matrix renormalization group.

3.1. Entanglement entropy of a bipartite system

The entanglement of two parts of a quantum system can be measured by the von Neumann
entropy. This entropy is defined in terms of the density matrices of each part. We may
consider, for later convenience, one part as ‘left’ and another as ‘right’ or one part as ‘exterior’
and another as ‘interior’. Then, let us represent states belonging to the left part with small
letters and states belonging to the right part with capital letters. A basis for the global states
(left plus right) is {|a〉}⊗{|A〉}. Let us take a global state, say the ground state for definiteness,
and represent it in this basis as

|0〉 =
∑
aA

ψaA|a〉 ⊗ |A〉, (3)

defining a coefficient matrix ψaA. Then we have two different density matrices, for each part:

ρL = ψ∗ψ
T

Tr ψ∗ψT
, ρR = ψ †ψ

Tr ψ †ψ
. (4)

Correspondingly, we have two von Neumann entropies:

SL = −Tra(ρL ln ρL), SR = −TrA(ρR ln ρR). (5)

Now it is important to recall the ‘symmetry theorem’, which states that both entropies are equal,
SL = SR . This can be proved in several ways; for example, by using the Schmidt decomposition
of the entangled state: both ρL and ρR have the same non-zero eigenvalues [9]. Let us remark
that the Schmidt decomposition embodies entanglement and, actually, the singular value
decomposition (as used by White) is its finite-dimensional version. The equality of entropies
may seem somewhat paradoxical, since there can be many more degrees of freedom in one
part (the exterior or rest of the universe) than in the other. But the entanglement entropies are
associated with properties shared by both parts, that is, with (quantum) correlations.

Let us see how interaction produces entanglement and increases the entropy. Consider two
non-interacting parts of a quantum system that are originally in respective mixed states. After
their interaction, which we describe as an arbitrary unitary evolution of the composite system,
the initial density matrix ρL ⊗ ρR has evolved to ρ ′

LR . As a consequence of subadditivity of
the entropy, it is easy to see that the partial traces ρ ′

L and ρ ′
R have in general von Neumann

entropies S ′
L and S ′

R such that S ′
L + S ′

R � SL + SR [8, 9]. Of course, if the initial state is a
product of pure states, SL = SR = 0. In essence, this increase of entropy after interaction is
an abstract form of the second law of thermodynamics.

3.2. Information theory and maximum entropy principle

The entropy concept arose in thermodynamics but only took a truly fundamental meaning
with the advent of information theory. In this theory, entropy is just uncertainty or missing
information, while information itself is often called negentropy. We recall basic definitions: the
information attached to an event that occurs with probability pn is In = − log2 pn (measured
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in bits); therefore, the average information (per event) of a source of events is

S({pn}) =
∑

n

pnIn = −
∑

n

pn log2 pn.

This average information is called the entropy of the source. Note that improbable events
convey more information but contribute less to the entropy: pI (p) = −p log2 p is concave
and has its maximum at p = e−1.

The previous definitions, given by Shannon in his theory of communication, may seem
unrelated to thermodynamic entropy as a property of a physical system. However, according to
the foundations of statistical mechanics on probability theory (the Gibbs concept of ensembles),
a clear relation can be established. This was done by Jaynes [12], by appealing to the Bayesian
philosophy of probability theory. In this philosophy, the concept of a priori knowledge is
crucial. Indeed, although the exact microscopic state of a system with many degrees of freedom
may be unknown, one has some a priori knowledge given by the known macroscopic variables.
Jaynes postulates, according to Bayesian philosophy, that the best probability distribution to
be attributed to a stochastic event is such that it incorporates only the a priori knowledge about
the event and nothing else. This postulate amounts to Jaynes’ maximum entropy principle:
given some constraints, one must find the maximum entropy probability distribution (density
matrix, in the quantum case) compatible with those constraints, usually, by implementing
them via Lagrange multipliers. In particular, more constraints mean less missing information
and so less entropy.

3.3. Information geometry

Distinguishability of probability distributions is an important concept in information theory.
The question is when two probability distributions are sufficiently distinguishable for some
purpose and what measures are necessary to distinguish them. This in an important problem
in statistics, in particular, in estimation theory. It has led to endow spaces of probability
distributions with a metric geometry.

Let us briefly review the fundamental concepts of information geometry [13]. Let p(x, ξ)

be an n-parameter family of probability distributions (ξ ∈ R
n). The primordial concept is the

existence of a metric, namely, the Fisher information matrix:

gij (ξ) = 4
∫

∂i

√
p(x, ξ)∂j

√
p(x, ξ) dx (6)

(the derivatives are taken with respect to the parameters). This metric provides any space
of probability distributions with a Riemannian structure. Hence, one can introduce the
α-connections, the case α = 0 being the standard Riemannian connection with respect to
the Fisher metric. The next important concept is the notion of divergence function. It is a real
positive function of a pair of probability distributions that vanishes if both distributions in the
pair coincide. So divergences are distance-like measures, but they do not satisfy in general
the remaining axioms of distance, in particular, they are not in general symmetric. However,
a divergence’s differential form is in fact symmetric and constitutes a metric. Most important
are the α-divergences, given (in the discrete case) by

D(α)(pi, qj ) =
∑

i

pif (qi/pi), (7)

f (x) =



4
1−α2 (1 − x(1+α)/2) α �= ±1
−ln x α = −1
x ln x α = 1.

(8)

They are related to generalized entropies: Rényi’s α-entropies, Tsallis’ entropy, etc.
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In general, opposite sign divergences satisfy

D(−α)(pi, qj ) = D(α)(qi, pj ), (9)

and are called dual. In particular, the case α = 0 is symmetric and actually provides a distance,
namely,

√
D(0)(pi, qj ), with

D(0)(pi, qj ) = 2
∑

i

(
√

pi − √
qi)

2. (10)

The ±1-divergence is called the Kullback–Leibler divergence or relative entropy and is
particularly important. Its differential form yields the Fisher metric in the continuous case.

Note that the distance defined by equation (10) has a simple interpretation. To see it, let us
associate with a probability distribution the vector {√pi}, so that the probability normalization
becomes a vector normalization. Therefore, probability distributions become rays in a real
vector space [14]. The distance

√
D(0)(pi, qj ) is just the standard distance in this vector space,

or rather the induced distance in the corresponding projective space. In the continuous case,
the standard Euclidean metric induces a metric in the parameter manifold that is precisely the
Fisher metric (6).

The above-defined concepts are classical but they all admit quantum generalizations [13].
The square root of the α = 0 quantum divergence coincides with the Bures distance between
density matrices. This distance, restricted to the subspace of diagonal density matrices (for a
fixed basis), does indeed become simply the square root of 2 Tr

(
ρ

1/2
1 −ρ

1/2
2

)2
[15]. In general,

we can write ρ1 = W1W
†
1 , ρ2 = W2W

†
2 for different pairs of operators {W1,W2}, and the

Bures distance can be defined by the infimum

D(0)(ρ1, ρ2) = 2 inf Tr(W1 − W2)(W1 − W2)
†. (11)

For pure states, the Bures distance is just the natural distance in the complex projective Hilbert
space, such that its infinitesimal form is the Fubini–Study metric [16–18]. Notably, the
distance between mixed states (density matrices) is given by minimizing the distance between
their respective purifications in a larger Hilbert space [19].

3.4. Quantum information theory

The concepts of Shannon’s classical theory of communication have quantum analogues
[9, 20]. But the quantum theory of communication is richer. Indeed, the key new notion in
the quantum theory is entanglement (as already described). Schumacher studied the problem
of quantum coding and, in particular, the problem of communication of an entangled state
[20]. The technical name is transposition, since the copy of a quantum state is not possible,
a fact that constitutes the no-cloning theorem [8]. His conclusion was that the von Neumann
entropy of the state is the quantity that determines the fidelity of the transposition: it is possible
to transpose the state with near-perfect fidelity if the signal can carry at least that information.
The method is analogous to classical coding, that is, one has to discard small probabilities, but
involves the use of the Schmidt decomposition.

Of course, fidelity and distinguishability are related concepts, and indeed the fidelity
F(ρ1, ρ2) = (1 − D(0)(ρ1, ρ2)/4)2 [19]. Maximal fidelity (F = 1) is equivalent to perfect
indistinguishability. Minimal fidelity (F = 0) takes place between maximally separated
mixed states, since the Bures distance is bounded (this is obvious for pure states).
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3.5. Quantum information interpretation of the density matrix renormalization group

Schumacher’s approximate transposition of an entangled state is essentially identical to White’s
procedure. Moreover, White’s distance criteria can be interpreted in terms of the distances
defined in information geometry.

Let us recall White’s prescription: select the block states to be kept by minimizing a
‘distance’ S = ||ψ〉 − |ψ̃〉|2 between the actual superblock state |ψ〉 and its approximation
|ψ̃〉 (equation (1)). In terms of quantum information theory, we want to maximize the fidelity
of the block mixed state or, in other words, to minimize the distance between the actual and
approximated block mixed states. According to Jozsa’s result [19], this minimization can be
achieved by minimizing the distance between their respective purifications in a larger Hilbert
space, which in this case is just the superblock. So it is correct to minimize the Hilbert space
distance S.

The density matrix renormalization group for mixed states also corresponds to a distance
minimization, in the space of superblock mixed states. The reference state is

∑
k wk|ψk〉〈ψk|

and its approximation is
∑

k wk|ψ̃k〉〈ψ̃k|. Then, according to equation (11),

D(0)(ρ1, ρ2) = 2
∑

k

wk||ψk〉 − |ψ̃k〉|2.

4. White’s algorithm and angular quantization

White’s density matrix renormalization group algorithm, exposed in section 2.2, can be purely
justified on a quantum information basis as follows. If ρ1 and ρ2 are two mixed states of a
Hilbert space H, then H ⊗ H is the smallest Hilbert space that contains purifications of both
states [19]. Therefore, for a block of given size, the most economical ‘rest of the universe’ is
a reflection of the block (with the same size).

However, the particular geometry in White’s algorithm lends itself to a more fruitful
connection, namely, the connection with angular quantization [4]. Before explaining angular
quantization, we must introduce the corner transfer matrix, a method of solving two-
dimensional classical systems that turns out to be related to White’s algorithm.

4.1. Corner transfer matrix and density matrix

Let us first recall the connection between quantum mechanics and classical statistical
mechanics in one more dimension, realized by the Euclidean path integral. For spin chains, the
equivalent classical system is defined on a two-dimensional lattice and the partition function
can be conveniently expressed in terms of the transfer matrix. This matrix evolves the system
from one row to the next one. In addition to the row-to-row transfer matrix, there was defined
the corner transfer matrix (in the context of soluble models). This matrix evolves the system
from one side of the corner to the other side. The formulation by Baxter of the corner transfer
matrix for soluble models is old, but its importance in our context was realized later, in a paper
by Thacker [21], in which he showed that the relevant symmetry is best understood in the
continuum limit, as we shall see.

To introduce the corner transfer matrix, a site in the middle of the two-dimensional lattice
is chosen as the origin, and then the spins (or other site variables) are fixed along the vertical
and horizontal axes. Four different corner transfer matrices, say A,B,C,D, are defined by
summing over the remaining site variables in each quadrant. Then the partition function
is Z = Tr(ABCD). The matrix ABCD represents the transfer from one side of the right
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AB

C D

Figure 2. Composition of four corner transfer matrices in the direction of the arrows.

horizontal semiaxis to the other side, as shown in figure 2. If we define the state on the
horizontal axis by the vector �(σL, σR) (splitting it on both semiaxes), we have

ABCD =
∑
σL

�∗(σL, σR)�(σL, σ′
R).

Of course, this matrix (with entries σR and σ′
R) corresponds to the density matrix of

the right horizontal semiaxis in the environment provided by the left horizontal semiaxis.
This connection was realized by Nishino and Okunishi [22] and developed by Peschel and
collaborators [23].

On an isotropic lattice, the four corner transfer matrices can be arranged to coincide, so

ρR = A4 = exp(−HCTM),

defining a sort of corner-transfer-matrix Hamiltonian, such that Z = Tr exp(−HCTM) [23].
Roughly speaking, this Hamiltonian adopts the form HCTM = ∑

n nHn, where Hn is a quasi-
local Hamiltonian and the index n runs over sites. In comparison with the standard Hamiltonian
for the row-to-row transfer matrix, we remark that the low-energy contribution of local states
is depressed as we move away from the origin, due to the factor n (and vice versa). To
substantiate this intuitive picture, we need to explain angular quantization in the continuum
limit (field theory).

4.2. Field theory half-space density matrix

Let us consider, for definiteness, a chain of coupled oscillators. In the continuum limit, that is,
for large correlation length, the model becomes simpler, in spite of having a non-denumerable
set of degrees of freedom. The action for this model, namely, a one-dimensional scalar field,
is (after a few redefinitions)

A[ϕ(x, t)] =
∫

dt dx

(
1

2
[(∂tϕ)2 − (∂xϕ)2] − V (ϕ)

)
, (12)

where ϕ is the field. So the chain is described by a relativistic 1+1 field theory (relativistic
with respect to the sound speed, normalized to one).
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Let us obtain a path integral representation for the density matrix on the half-line with
respect to the ground state (the vacuum) of action (12) [24–26]. In the continuum limit, the
half-line density matrix is a functional integral,

ρ[ϕR(x), ϕ′
R(x)] =

∫
DϕL(x)ψ0[ϕL(x), ϕR(x)]ψ∗

0 [ϕL(x), ϕ′
R(x)], (13)

where the subscripts refer to the left or right position of the coordinates with respect to the
boundary (the origin). Now, we must express the ground-state wavefunction as a path integral,

ψ0[ϕL(x), ϕR(x)] =
∫

Dϕ(x, t) exp(−A[ϕ(x, t)]), (14)

where t ∈ (−∞, 0] and with boundary conditions ϕ(x, 0) = ϕL(x) if x < 0, and
ϕ(x, 0) = ϕR(x) if x > 0. The conjugate wavefunction is given by the same path integral
and boundary conditions but with t ∈ [0,∞). Substituting into equation (13) and performing
the integral over ϕL(x), one can express ρ(ϕR, ϕ′

R) as a path integral over ϕ(x, t), with
t ∈ (−∞,∞), and boundary conditions ϕR(x, 0+) = ϕ′

R(x), ϕR(x, 0−) = ϕR(x). In other
words, ρ(ϕR, ϕ′

R) is represented by a single path integral covering the entire plane with a cut
along the positive semiaxis, where the boundary conditions are imposed.

Next, we need to calculate the density matrix, which we can do by diagonalizing it in the
appropriate basis.

4.3. Angular quantization and Rindler space

Two-dimensional relativistic field theory has Lorentz symmetry, which becomes just rotational
symmetry in its Euclidean version. The generator of rotations in the (x, t) plane is given by

L =
∫

dx(xT00 − tT11), (15)

in terms of the components of the stress tensor computed from the action (12). Of course, T00

is the Hamiltonian density and T11 is the momentum density. To simplify, one can evaluate L
at t = 0, obtaining a Hamiltonian that we recognize as the continuum limit of HCTM, defined
in section 4.1.

For quantization, let us consider a free action [V (ϕ) = 0]. In the Schrödinger
representation, we should replace the momentum 
 = ∂tϕ with 
(x) = iδ/δϕ(x).
However, as in canonical quantization, one rather uses the second-quantization method, which
diagonalizes the Hamiltonian by solving the classical equations of motion and quantizing the
corresponding normal modes. Let us recall that, in canonical quantization, if we disregard
anharmonic terms, the classical equations of motion in the continuum limit become the
Klein–Gordon field equation, giving rise to the usual Fock space. In an angular analogy, the
eigenvalue equation for L leads to the Klein–Gordon equation in polar coordinates in the (x, t)

plane. The free field equation in polar coordinates,

(� + m2)ϕ =
(

1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂φ2
+ m2

)
ϕ = 0, (16)

can be solved by separating the angular variable: it becomes a Bessel differential equation in
the r coordinate with complex solutions I±i�(mr), � being the angular frequency. We have a
continuous spectrum, which becomes discrete on introducing boundary conditions. One of
them must be set at a short distance from the origin, to act as an ultraviolet regulator [24–26],
necessary in the continuum limit.

Therefore, the second-quantized field is (on the positive semiaxis t = 0 ⇔ φ = 0, x ≡ r)

ϕ(x) =
∫

d�

2π

b�Ii�(mx) + b
†
�I−i�(mx)√

2 sinh(π�)
, (17)
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Figure 3. Angular-quantization wave K8i (x). Note the behaviour near x = 0.

where we have introduced annihilation and creation operators and where the term that appears
in the denominator is just for normalization, to ensure that those operators satisfy canonical
conmutation relations. There is an associated Fock space built by acting with b

†
� on the

‘vacuum state’. These states constitute the spectrum of eigenstates of L, which adopts the
form L = ∫

d��b
†
�b� (where the integral is replaced with a sum for discrete �). They are

the density matrix eigenstates as well.
Let us remark that the functions I±i�(mx) have wavelengths that increase with x. It is

illustrative to represent a real ‘angular-quantization wave’,

Ki�(mx) = iπ

2 sinh(π�)
[Ii�(mx) − I−i�(mx)].

This solution is oscillatory for x < �/m, with a wavelength proportional to x, and decays
exponentially for x > �/m (figure 3). Actually, for x � �/m, wavefunctions behave like x±i,
that is, like trigonometric functions of ln x.

This type of quantization was first introduced in the context of quantization in curved
space, in particular, in Rindler space [5]. Rindler space is just Minkowski space and, therefore,
not curved, but in coordinates such that the time is the proper time of a set of accelerated
observers. Its remarkable feature is the appearance of an event horizon, which implies that the
ground state (the Minkowski vacuum) is a mixed (thermal) state (the Unruh effect). The fact
that wavelengths vanish at x = 0 is to be expected from the Rindler space viewpoint, because
the origin corresponds to the horizon: the quantum states concentrate on it. The connection
with black-hole entropy and Hawking radiation is very briefly explained in the next section.

4.4. Black-hole entropy

The motivation to study accelerated observers was, of course, the problem of black-hole
entropy and Hawking radiation. This radiation is perceived by static observers but not by
inertial (free-falling) observers. In fact, what a static observer close to the horizon can see is
well described by the Rindler geometry. In other words, the large black-hole mass M limit of
the Schwarzschild geometry is the Rindler geometry. To realize this limit, it is convenient to
use the Kruskal–Szekeres coordinates u, v, instead of the Schwarzschild coordinates t, r (r is
the radial distance which together with time are the only relevant variables of the Schwarzschild
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geometry in any dimension) [5]. For small values of these coordinates (equivalently, M → ∞),
the curvature can be neglected and the geometry becomes locally the Rindler geometry.

Once established that the geometry near the black-hole horizon is locally the Rindler
geometry of the preceding section, we can readily transfer the form of the density matrix of
a scalar field therein, where we now ignore (trace over) the degrees of freedom inside the
horizon. Hence, we can define a von Neumann entropy associated with this density matrix.
Furthermore, in so doing, we can appreciate that the concept of black-hole entropy takes a new
meaning: in addition to being of quantum origin, this entropy is related to shared properties
between the interior and exterior, namely, to the horizon. Moreover, the radial vacuum is a
thermal state with respect to the original Schwarzschild coordinates, giving rise to Hawking
radiation [5].

4.5. Geometric entropy

We have seen that the half-line density matrix of a field theory has a geometric interpretation in
Rindler space. Furthermore, the entropy of black holes can be understood as a generalization
to a more complicated (curved) geometry. Since the important feature is just the existence of
a horizon, we may wonder if further generalization is possible.

Indeed, the notion of ‘geometric entropy’ has been introduced by C Callan and F Wilczek
[26], as the entropy ‘associated with a pure state and a geometrical region by forming the pure
state density matrix, tracing over the field variables inside the region to create an ‘impure’
density matrix’. They computed the Rindler space case (like Bombelli et al [24]) and further
proposed a generalization to different topologies.

A different notion of geometric entropy can be deduced by purely geometrical means from
the presence of horizons, namely, as associated with a spacetime topology that does not admit
a trivial Hamiltonian foliation [27]. This type of topology prevents unitary evolution and
produces mixed states. In fact, it is only this second type of entropy that leads to the famous
‘one-quarter area law’ for black holes, due to its origin in purely gravitational concepts. On
the contrary, the first notion of geometric entropy needs an auxiliary field theory, involves UV
divergences and needs renormalization before a comparison with the gravitational notion can
be made.

5. Conclusions

We have seen that a density matrix renormalization group transformation amounts to a Hilbert
space reduction that essentially preserves the information, that is, preserves the entropy. In
this sense, it can be understood as a quantum coding operation, namely, a quantum data
compression, which is not lossless but nearly so. So a density matrix renormalization group
transformation is analogous to standard compression of classical data, such as it is routinely
used in everyday data processing. Indeed, the singular value decomposition is used for
classical data compression when data can be arranged in matrix form. Therefore, it is natural
that it can also be applied to quantum data compression.

The density matrix renormalization group’s ability to keep a constant and small Hilbert
space size while the system size grows is crucial for its approaching a fixed point that represents
the infinite size system. This limit is necessary to study quantum phase transitions, for
example. The promising interface between quantum phase transitions and information theory
is just beginning to be studied [2, 11]. Furthermore, in the limit of large correlation length, the
relevant dynamics, as given by the ground state and the lowest excited states, can be described
by a relativistic quantum field theory (in which the mass of the excitations decreases with the
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correlation length). Since relativistic quantum field theories in 1+1 dimensions can be treated
with powerful mathematical methods, we can expect that they are a suitable ground to explore
the connection of quantum dynamics with information theory. We remark, of course, that one
can stop the renormalization group iteration at any desired point, when some predetermined
size is reached (the ‘finite system method’ [1]).

The density matrix renormalization group ability to keep a constant and small Hilbert
space size relies on having a distribution of density matrix eigenvalues in which most of them
are actually negligible. In fact, their typical distribution decays exponentially. White proposed
the analogy with an ordinary statistical system with the canonical distribution [1] (which was
the original motivation of Feynman’s density matrix philosophy). We have seen that it is more
than a mere analogy: White’s algorithm is equivalent to the calculation of the density matrix
in angular quantization. The connection with the Unruh effect reveals that one can indeed
associate a particular thermodynamical picture and a temperature with angular quantization.
This picture can be generalized in terms of the concept of geometric entropy and, in fact,
connects with the notion of holography in quantum gravity [28].

Finally, regarding angular quantization and its associated distribution of quantum states,
let us remark how it helps us to understand the efficiency of White’s algorithm: it is
very efficient because it employs the smallest number of boundaries allowed, namely, just
one boundary, unlike other renormalization group formulations. For example, the block
partitioning technique produces a very large number of boundaries.
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